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A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has
been developed based on a near-field compressible Navier–Stokes solver coupled with a far-field linearized Euler
solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-
field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses
all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of
an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the
near-field. This computational framework has been successfully applied to study optimal boundary-control of
blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-
problem presented here, the noise propogated toward the ground is reduced by 12dB.

Introduction
The coupling of accurate computational fluid dynam-

ics analysis with optimal control theory has the potential
to advance active flow-control for complex flows includ-
ing flows involving aeroacoustic noise generation. In this
paper, we report on progress in extending our previous
work [1, 2] on aeroacoustic control by using a multi-model
approach for optimal control of aeroacoustics. Our motiva-
tion is to develop efficient numerical methods to investigate
the feasibility of using wall-normal suction/blowing actua-
tion for controlling the Blade-Vortex Interaction (BVI) phe-
nomenon. Rotorcraft BVI typically occurs in low speed,
descending flight-conditions (such as on approach to land-
ing) and produces high amplitude, impulsive noise that
often dominates other noise sources. Reduction of BVI
noise can alleviate restrictions on civil rotorcraft use near
city centers and thereby enhance community acceptance.
We have developed an optimal control framework for

aeroacoustic applications that will help to identify novel
strategies for controlling BVI noise in a systematic man-
ner. The main purpose of aeroacoustic computations is
to determine the sound intensity and directivity far away
from the noise source. However, the computational cost
of using a high-fidelity flow-physics model across such a
large domain is usually prohibitive andmost researchers re-
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sort to some form of multi-physics, domain-decomposition
method [3]. For example, in Figure 1 the near-field is
obtained by numerical solution of the Navier–Stokes equa-
tions while far away from the noise source, where the ef-
fects of nonlinearities are negligible, the linearized Euler
equations or isentropic wave equation can be used to model
the propagating acoustic waves. The interface between the
near-field and far-field regions can be accomplished by us-
ing a Kirchhoff-type method [4, 5], Lighthill theory and its
derivatives [6, 7], or by a direct solution of the linearized
Euler equations [8–11]. Applying gradient based optimiza-
tion in such multi-domain settings is an active research
area and derivation of the optimality conditions for multi-
domain systems obviously requires an in-depth knowledge
of the optimal control formulations for each subsystem. In
this paper, our focus is on the formulation and implemen-
tation of multi-model/multi-domain methods for optimal
control of aeroacoustics with specific application to BVI
noise control.

Problem Formulation
Our previous research has included adjoint-based, op-

timal control of the unsteady compressible Navier–Stokes
and Euler equations [1,12–15] as well as optimal control of
unsteady flows based on the Discontinuous Galerkin (DG)
Method [2]. Here, we present a multi-domain, multi-model
formulation for both state simulation and adjoint-based op-
timal control using a DG formulation. In this approach,
the coupling of multi-domains (near-field and far-field) and
multi-models is achieved byweakly enforcing continuity of
normal fluxes across a coupling surface using a discontinu-
ous Galerkin approach. The goal of multi-domain/multi-
model simulation is to reduce the overall computational
cost to simulate the flow by using locally less expensive
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Fig. 1 Blade Vortex Interaction (BVI)

and more computationally efficient physical models with-
out sacrificing the global fidelity of the simulation. Our
objective is to develop multi-model simulations using dis-
continuousGalerkin discretizations for the state and adjoint
equations and to use this method within gradient-based
optimization algorithms to obtain optimal temporal and
spatial distributions of boundary actuation to minimize far-
field sound.
The control objective for the problems discussed in this

paper targets acoustic waves that are typically several or-
ders of magnitude smaller than the mean flow. This makes
linearized methods, such as the linearized Euler equations
or the wave equation, appropriate methods for acoustic
propagation in the far-field. Because we specifically focus
on blowing and suction on the surface of the rotor blade,
which may introduce vorticity at the blade surface, we use
the full Navier–Stokes equations in the near-field to cap-
ture this viscous phenomenon. The use of Navier–Stokes in
the near-field limits our current computations to relatively
low Reynolds numbers for idealized two-dimensional BVI
model problems and our future work will be to extend these
methods to increasingly more realistic BVI scenarios.
In general, our multi-model framework is based on a

non-overlapping decomposition of the spatial domain and
model with the introduction of transmission conditions be-
tween the subdomains and submodels that couple the state
and adjoint solutions in the optimality system. Both the
state and adjoint coupling of the multi-models are achieved
by weakly enforcing continuity of normal fluxes across a
coupling surface using a DG formulation. Details of the
state and adjoint coupling for this multi-domain, multi-
model system are discussed in next section. The remainder
of this section focuses on the formulation for the state, opti-
mal control problem, and the resulting adjoint equations. In
order to simplify the presentation, we limit the discussion
to a system that has only two subdomains (i.e., near-field
and far-field) where Navier–Stokes is solved in the near-
field and the linearized Euler equations are solved in the
far-field. However, both our formulation and implementa-
tion allow for an arbitrary number of subdomains with a
variety of physicals models including Navier–Stokes, Eu-
ler, Linearized Navier–Stokes, linearized Euler, and a wave

equation. The interested reader should consult [16].

State Equations

The computation domain Ω is divided into two subdo-
mains Ωnear in the near-field and Ωfar in the far-field. The
coupling boundary between these two subdomains is re-
ferred to as Γc.
In the near-field, the flow is modeled using the compress-

ible Navier–Stokes equations which, in conservative form,
are given by

U,t(Y) +
(
Fi,i(Y) − Fv

i,i(Y, ∇Y)
)

= 0 (1a)

in (t0, tf ) × Ωnear with boundary conditions

Bnear(Y, g) = 0 on (t0, tf ) × ∂Ωnear , (1b)

where Bnear includes the coupling between near- and far-
field subdomains and the transpiration boundary condition
on the rotor blade where g is the control variable which is
the wall-normal velocity on the rotor-blade in this paper.
The initial conditions in the near-field are

Y(t0,x) = Y0(x) in Ωnear (1c)

whereY0 is typically a steady-state solution of the Navier–
Stokes equations over the rotor blade with a superimposed
vortex upstream of the blade as shown schematically in
Fig. 1. In equations (1), n is the unit outward normal
vector, Y = (ρ, u1, u2, T )T is the vector of primitive
flow variables, and the conservation variables, expressed as
functions of the primitive variables, are given byU(Y) =
(ρ, ρu1, ρu2, ρE)T .
The far-field flow in Ωfar is modeled using the linearized

Euler equations. We assume thatY = Y + y whereY are
mean-flow primitive variables and y are fluctuations in the
primitive variables. With this notation, the linearized Euler
equations are

My,t +
(
AiMy

)
,i

= 0 in (t0, tf ) × Ωfar (2)

where

M(Y) =
∂U
∂Y

∣∣∣∣
Y

Ai(Y) =
∂Fi

∂U

∣∣∣∣
U(Y)

In order to discretize this equation using discontinuous
Galerkin, we introduce the quasi-conservative variables
Q(y;Y) = M(Y)y and recast the linearized Euler equa-
tions in the form

Q,t(y) + F′
i,i(y) = 0 in (t0, tf ) × Ωfar (3a)

where the flux is given byF′
i(y) = AiQ(y). Equation (3a)

is solved subject to appropriate boundary conditions of the
form

Bfar(y) = 0 on (t0, tf ) × ∂Ωfar . (3b)
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For the problems presented here, the far-field equations are
not explicitly dependent on the control variables g which
live on the rotor-blade surface. However,B ′ does represent
the coupling between the near- and far-field subdomains as
well as nonreflecting boundary conditions on the outer far-
field boundary. Initial conditions for the far-field problem
are of the form

y(t0,x) = y0(x) in Ωfar (3c)

where y0 is typically zero and Y is typically a uniform
flow. In the following, we suppress the explicit dependence
of far-field quantities onY unless necessary for clarity.
Given the similarity of (1) and (3), we are able to solve

these equations in a unified discontinuous Galerkin frame-
work that is particularly convenient for multi-model simu-
lation and optimization.

Optimal Control Problem

In this paper, we seek to minimize the following objec-
tive function

J(y, g) =
α

2

∫ tf

t0

∫
Ωobs

(p′)2 dx dt +

1
2

∫ tf

t0

∫
Γg

g2 dΓ dt (4)

where p′(x) are pressure fluctuations in the far-field and
the penalty factor α = 103. The objective is to minimize
the acoustic pressure intensity in Ωobs ⊂ Ωfar (e.g., see
Figure 5) within the time horizon (t0, tf ). Recall that the
control g is exerted on the surface of the rotor blade, Γ g ,
and is chosen to be the time and position dependent wall-
normal velocity.

Adjoint Equations

We use a gradient-based optimization procedure to solve
the optimal control problem represented by minimizing (4)
subject to the state equations (1) in the near-field and (3) in
the far-field. The gradient is computed using a continuous
adjointmethod (i.e. the optimize-then-discretize approach).
Because of space limitations, we only present a summary of
the formulation here and the interested reader should con-
sult [16] for more details.
We begin by introducing the adjoint variables λ for the

near-field Navier–Stokes equations and ξ for the linearized
Euler equations in the far-field. We then define an aug-
mented Lagrangian as

L(U(Y),Q(y), g, λ, ξ) = J(y, g) +∫ tf

t0

∫
Ωnear

λ · (U,t + Fi,i − Fv
i,i

)
dx dt +∫ tf

t0

∫
Ωfar

ξ · (
Q,t + F′

i,i

)
dx dt (5)

and adjoint equations are obtained by taking appropriate
variations of the Lagrangian. For example, variation with

K1
n

n

K2

Ubc

∂Ω

+

+
−

−

Ω = K1 ∪ K2

Fig. 2 Schematic of DGM discretization, the solution and
weighting functions are discontinuous across element inter-
faces

respect to Y lead to the adjoint Navier–Stokes equation in
the near-field

−λ,t − (AT
i λ),i + (D̂T

i λ),i − (K̂T
ijλ,j),i

= AT
i,iλ + D̂T

i,iλ in (t0, tf ) × Ωnear (6)

while variation of (5) with y yields the adjoint linearized
Euler equation in the far-field

−ξ,t − A
T

i ξ,i = S in (t0, tf) × Ωfar (7)

where S depends on variation of the objective functional
with y. The interested reader can consult [16] for the defi-
nitions ofAi, D̂i, K̂ij , and S.
Adjoint equations (6) and (7) are solved subject to ap-

propriate boundary and final-time conditions and the reader
should consult [16] and [13, 14] for details regarding the
adjoint boundary conditions on the control surface and the
resulting gradient equations. Our focus here is primarily
on the multi-domain, multi-model coupling of the State
and Adjoint systems. In our formulation, this coupling
is achieved naturally by enforcement of weak boundary
conditions within our discontinuous Galerkin spatial dis-
cretization as discussed in the next section.

Numerical Implementation
Both the State and Adjoint equations are discretized

in time with a fourth-order accurate explicit Runge-Kutta
method which is symmetric and therefore well-suited for
optimal control problems [17]. A high-order accurate, dis-
continuous Galerkin method is used for spatial discretiza-
tion. The discontinuous Galerkin method can be thought
of as a hybrid of finite-volume and finite-element meth-
ods that has a number of potential advantages including:
high-order accuracy on unstructured meshes, local hp-
refinement, weak imposition of boundary conditions, local
conservation, and orthogonal hierarchical bases that sup-
port multi-scale and multi-physics modeling. For a recent
update on the status of discontinuous Galerkin, the inter-
ested reader can consult [18]. For our current purpose, the
local conservation property and weak-boundary condition
enforcement capabilities of DG are leveraged to simplify
the implementation of the multi-model, multi-domain ap-
proach.

Weak Formulations

The DG method for the near-field is obtained by starting
from the strong form of the compressible Navier–Stokes
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equations (1a). Consider a single element, Ke, multiply
by a weighting functionW that is continuous in Ke, inte-
grate the flux terms by parts, replace the actual flux terms
by appropriate numerical fluxes, and sum over all elements
K ∈ Ωnear. Doing so results in the discontinuous Galerkin
weak form

N∑
e=1

{ ∫
Ke

(W · U,t + W ,i · (Fv
i − Fi) − W · S) dx +

∫
∂Ke

W · (
F̂n(U−,U+) −

F̂v
n(U−, ∇U−,U+, ∇U+)

)
ds

}
= 0 (8)

where the U+ and U− states are defined in Figure 2.
For an element edge on the subdomain boundary ∂Ω near,
U+ = Ubc for an edge coincident with a prescribed bound-
ary condition or, in the case of the coupling boundary be-
tween Ωnear and Ωfar, U+ = U(Y + y) on Γc where
Y is the mean field and y is the far-field (perturbation)
solution at that edge. Likewise, for inter-element bound-
aries, U+ comes from the neighboring element. Thus, all
interface and boundary conditions are set through the nu-
merical fluxes. A simple Lax–Friedrichs flux is chosen for
the inviscid flux F̂n [19] and we use the method of Bassi &
Rebay [20] for the numerical viscous flux F̂v

n.
The far-field linearized Euler equations (3a) are also dis-

cretized in space using discontinuous Galerkin with the
weighting function on element Kf denoted by V . This
leads to the DG weak form

M∑
f=1

{ ∫
Kf

(V · Q,t − V ,i · AiQ − V · S) dx +

∫
∂Ωf

V · F̂′
n(y−,y+) ds

}
= 0 (9)

where, again, all interface and boundary conditions are
set through the numerical flux and we use a simple Lax–
Friedrichs flux for F̂′

n(y−,y+). For the outer far-field
boundary, y+ = 0 which is a first-order nonreflecting con-
dition. On the coupling boundary Γc, y+ = Y(U) − Y
whereY(U) is the primitive solution vector corresponding
to the conservative state vectorU at the near-field edge.
Similar DG spatial discretizations are used for the ad-

joint equations (6) and (7) and the resulting weak forms
can be found in [16]. As in the state equation coupling
presented above, the adjoint Navier–Stokes and adjoint lin-
earized Euler equations are coupled through the numerical
fluxes along Γc.

Optimization

In order to solve the optimization problem, the multi-
model state is first solved forward in time from t0 to tf
and the state (in the near-field) is stored for use in the ad-
joint computation. The multi-model adjoint is then solved

x

y

-30 -20 -10 0 10 20 30
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

(a)

x

y

-10 0 10

-10

0

10

(b)

x

y

-10 0 10

-10

0

10

(c)

Fig. 3 Acoustic scattering from a circular cylinder: (a) Inci-
dent and scattered pressure on the full domain, (b) Incident
and scattered pressure near the cylinder, (c) Scattered pres-
sure near the cylinder. The irregular solid line denotes the
interface between the Euler region in the near-field and the
wave equation region in the far-field.

backward in time from tf to t0 and the resulting adjoint so-
lution is used to evaluate the gradient of the objective func-
tion with-respect-to the control. This gradient is then used
in a a nonlinear conjugate-gradient optimization algorithm
with line-search globalization. Typically we solve the opti-
mization problem to a fairly loose tolerance (such that the
change in subsequent values of J is less than about 10−3).
Attempting to solve the problem to a tighter tolerance is
typically nonproductive since the continuous adjoint based
gradient is only accurate to the order of the truncation error
in the discretization. Likewise, changes in J of less than
10−3 are typically not practically relevant.

State Validation
As validation of our multi-model state solver, we con-

sider the classical acoustics benchmark problem of planar
acoustic wave scattering from a circular cylinder. We solve
this problem using our multi-model approach with the Eu-
ler equation in the near-field coupled to the wave equation
in the far-field and the numerical solutions are compared
to the analytical result [21]. For this calculation, the refer-
ence length is the cylinder radius, the reference velocity is
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Fig. 4 Acoustic scattering from a circular cylinder: (a) Com-
parison of RMS pressure along the ray θ = π, (b) Comparison
of RMS pressure along radius r = 10 (that is outside the cou-
pling interface).

the far-field acoustic speed, and all other reference values
are based on far-field values. The incident plane-wave is
expressed as pi = P0 exp[ik(x − ct)], where the direction
of propagation is along the positive x-axis and P0 = 0.01
is the incident pressure amplitude. Under these conditions,
the scattered pressure wave is expressed by the following
Bessel function expansion

Ps =
∞∑

m=0

Am cos(mθ)[Jm(kr) + iNm(kr)]e−iωt,

where (r, θ) are the usual cylindrical coordinates, ω =
2πc/λ,

Am = −εmP0i
m+1e−iγm sin(γm),

and tan(γ0) = −J1(k)/N1(k) as defined in [21].
The simulation is conducted for an incident acoustic

wave with k = 2.5. The domain Ω is large [−30, 30] ×
[−30, 30] with a sponge layer enforced around the perime-
ter of the domain to approximate a nonreflecting boundary
[22]. From Figure 3, it can be seen that an arbitrary inter-
face (coincident with inter-element boundaries) is selected
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0
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4
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Navier-Stokes

Linearized Euler

Linearized Euler

P3

P4

P1 P2

Fig. 5 Optimal control of BVI noise: problem setup

that separates the Euler domain in the near-field from the
wave equation domain in the far-field.
Figure 3 shows contours of the instantaneous, pressure

field from the simulation and smooth solutions are ob-
tained near the coupling surface. In Figure 4, the RMS
pressure from the scattered wave is compared with the an-
alytical solution from inviscid theory and both the RMS
pressure agrees with the theoretical results with no indica-
tion of inaccuracies near the coupling interface. This test
case, demonstrates that our multi-model approach can ac-
curately predict the intensity and directionality of acoustic
wave scattered from a solid body. This and other valida-
tion cases [16, 23], give us confidence in our multi-model
formulation.

BVI Model Problem
This section presents results for the optimal control of

noise produced by the interaction of a vortex with a Bell
AH1 rotor-blade in a uniform freestream. For this BVI
problem, as shown in Figure 5, the computational domain
is decomposed into three parts. In the middle region, the
Navier–Stokes equations are used to model the nonlinear
interaction between the vortex and rotor blade. In the upper
and lower regions the linearized Euler equations are used to
capture the scattered acoustics.
The initial condition is computed by superimposing a

vortex on the steady-state solution of the Navier–Stokes
equations for a uniform flow of freestream Mach number
M∞ = 0.3 over the Bell AH1 rotor-blade. The vortex
is advected downstream by the freestream and interacts
with the rotor blade in its path leading to a BVI type noise
source.
A relatively strong Oseen vortex of circulation−0.5 and

core radius Rv = 0.15 is superimposed on the uniform
flow at location (−6, 0.25) upstream of and above the rotor,
where (0, 0) corresponds to the leading edge of the rotor
blade. The vortex is convected downstream by the flow
while a relatively strong cylindrical acoustic wave travels
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outward from the initial point of superposition. In order
to allow the initial transient acoustic waves to leave the
domain, we advance the solution for 1.36 time units and de-
fine this as our initial condition for optimization, t0 = 1.36
Recall that the control objective (4) is to minimize the

acoustic pressure intensity in the rectangular area depicted
in Figure 5. Motivated by the success of Collis et al. [15]
using boundary blowing/suction for the optimal control of
aeroacoustic noise generated by vortex interacting with a
circular cylinder, we use the time- and space-dependent
distribution of surface normal velocity (suction/blowing)
over the entire rotor surface as our control mechanism.
Nakamura’s work [24] indicates that the leading edge of
the rotor blade plays a very important role in the interaction
process. Likewise, through numerical simulation, Mor-
vant [25] also shows that BVI is primarily a leading-edge
phenomenon and the compressibility waves which propa-
gate upstream above and below the rotor are generated from
the large flow-deflections at the leading edge.
Based on these observations, we define our optimization

time-window to capture only the leading-edge acoustics in
order to reduce computational cost. Thus, the optimization
time-window consists of 20, 000 uniform time-steps with
∆t = 8 × 10−5 from time t0 = 1.36 to tf = 2.96. Four
measurement stations are placed above and below the ro-
tor blade to record the time-history of pressure fluctuations
(see Figure 5).
Stations P1 and P2 are located in the linearized Euler

subdomain above the blade to capture the upward traveling
acoustics while stations P3 and P4 are located inside the
observation region Ωobs. Contours of scattered pressure
at different time-instants are shown in Figure 6 both with
and without control. With control, the intensity of acoustic
pressure inside the observation region is reduced dramati-
cally. Quantitatively, the value of J is reduced from 0.91 to
0.06 and the sound pressure level in the observation region
is reduced by approximately 12dB.
However, the sound pressure level above the rotor blade

upstream is strengthened as seen in Figure 6. This is more
clearly observed in Figure 8, which plots the history of
pressure fluctuations at stations P1, P2, P3 and P4. Com-
pared with the uncontrolled pressure fluctuations at those
four stations, the amplitude at P3 and P4, inside the ob-
servation region Ωobs, is noticeably reduced. Near the end
of the time-interval at P4, there is a slight increase in the
amplitude of the pressure fluctuations that is associated
with acoustic waves generated as the vortex passes over the
trailing edge of the rotor blade. Comparing the pressure
fluctuations for uncontrolled and controlled flow in Fig-
ure 8, shows that there is a delayed effect of the control
observed at all stations due to the finite sound speed.

Adjoint Analysis

To better understand the effect of wall-transpiration con-
trol, the evolution of adjoint variable λ4 (in the near-field)
and ξ4 in the far-field, which contributes to the gradient
information for the control update, is shown in Figure 7.

Fig. 8 Time history of pressure fluctuations at different sta-
tions. From top to bottom: station 1, station 2, station 3,
station 4: no control; optimal control.
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Fig. 6 Optimal control of BVI noise: contours of scattered pressure p − pa at instants t = 1.78, 2.18, 2.58, 3.08 for no-control
(left) and control (right).
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Fig. 7 Adjoint variable λ4 in the near-field and ξ4 in the far-field. Time goes backward in the adjoint solution (a) t=2.92, (b)
t=2.16, (c) t=1.00.

This adjoint quantity is associated with an adjoint “acoustic
wave” generated by pressure fluctuations in the observation
region. As the adjoint wave moves outward from the ob-
servation region, it interacts with the rotor blade leading a
non-zero adjoint field on the blade surface that corresponds
to the gradient of the objective function with respect to
the control. Given this qualitative behavior of the adjoint
solution, such interaction between the control and the flow-
field alters the far-field acoustics delicately by changing the
near-field acoustic source. Figure 7 also shows that the ad-
joint solution around the coupling surface is quite smooth,
indicating that our coupling approach for the adjoint equa-
tion is working properly.

Discussion

In order to understand the underlying mechanism of
noise reduction, we consider the effect of the control on
several important BVI parameters. Interestingly, two im-
portant parameters for BVI noise — vortex strength and
miss distance — are not significantly changed. Without
control, the vortex strength changes from -5.01 to -4.13
after passing the blade. With control, the vortex strength
changes from -5.01 to -4.11 and the path is nearly identical
as shown in Figure 9. Thus, the control appears to have
a negligible effect on both the vortex trajectory and vortex
strength.
Considering the direct relation between the strength of

BVI noise levels and temporal pressure gradients near the
leading-edge [26], we now explore the effect of control on
the transient drag and lift histories. Figure 10 shows that
the drag coefficient Cd is slight increased during the first
half of the optimization interval, which appears to be asso-
ciated with an increase in viscous stress due to the control
on the rotor blade surface. During the second half of the
optimization time-interval, there are only slight changes in
the drag as the control is relatively weaker.
More relevant for BVI noise are the changes in lift coeffi-

cientCl, which are primarily due to pressure differences on
the blade surface. As observed by Peake and Crighton [27],
the reduction of unsteady lift on the blade during a BVI
event should, at least at low Mach number, lead to re-
duced sound generation. This observation has led to the

-0.5 0 0.5 1

-0.5 0 0.5 1

0

0.5

1

0

0.5

1

(a) No control

(b) Optimal control

Fig. 9 Vortex trajectories with and without control.

use of oscillating trailing edge flaps [28–30] as well as suc-
tion/blowing on the blade surface [31, 32] to reduce the
unsteady lift on rotor blades. Figure 11 shows that unsteady
lift is noticeably reduced due to the control. More impor-
tantly, Figure 11 also shows that the temporal gradient of
Cl is reduced which is directly related to the strength of
BVI sound [26], and is consistent with the results shown in
Figure 8.

Conclusions
We believe that this work is the first model-based ef-

fort using optimal control theory to construct controls that
reduce BVI noise on a (relatively) realistic blade-vortex
interaction (BVI) configuration. Our solutions are ob-
tained using an efficient and novel multi-domain and multi-
model method based on a high-order accurate discontin-
uous Galerkin discretization. This approach works well
for both state and adjoint computations and leads to BVI
control results that are quite promising. In particular, it
is shown that optimal distributions of wall-normal suc-
tion and blowing can be obtained that significantly reduce
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Fig. 10 Time history of drag coefficient Cd: no con-
trol; optimal control.

Fig. 11 Time history of lift coefficient Cl: no control;
optimal control.

downward radiated BVI noise. For the conditions studied
here, a 12dB reduction in sound pressure level is obtained
when the objective function targets downward radiated BVI
sound. While the optimal control has negligible effect on
both the vortex strength and trajectory, it does alter the in-
teraction of the vortical and potential fields, which is the
source of BVI noise. While this results in a slight increase
in drag, there is a significant reduction in the temporal gra-
dient of lift leading to a reduction in BVI sound levels.
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